NUSOD Blog

Connecting Theory and Practice in Optoelectronics

Category Archives: laser

A fresh look at high-power laser analysis

nthOne of the key rules of semiconductor laser physics relates to the carrier density inside the active layer. As long as I can remember, this rule states that the carrier density remains constant when the injection current rises above the lasing threshold. The reason lies in the stimulated emission of photons which consumes all additional carriers injected above threshold. The threshold carrier density delivers the threshold optical gain that compensates for the optical loss, which is usually not dependent on the injection current. Thus, the threshold carrier density should also remain constant. However, my recent analysis of high-power lasers yields different results (see picture). Read more of this post

Advertisements

NUSOD 2016 Preview:Numerical Simulation of Quantum Dot Single Section Fabry-Perot Laser Combs

FigureNusod01

Calculated output power versus time at the laser facet (red line) and after GDD compensation (blue line). The inset plots the simulated optical spectrum.

There is an increasing interest toward the development of simple and compact comb laser sources. One promising application is the use of a InAs/GaAs Quantum Dot or InAs/InP Quantum Dash single section Fabry-Perot lasers. Many experiments on these devices have demonstrated the possibility of generating a wide optical spectrum of lasing longitudinal modes that are phase-locked. The phase locking is demonstrated by the very narrow RF line at the beat note frequency and by the possibility of getting pulses directly at the laser output or after group delay dispersion compensation with a proper length of dispersive optical fibre. There is however a lack of modelling work providing physical explanations on the capability of the QD lasers of generating phase locked lasing lines.

Read more of this post

NUSOD 2016 Preview: GaAs-based dilute bismide semiconductor lasers – theory vs. experiment

GaBiAs_band_gapsTwo long sought-after goals for the semiconductor community have been (i) to develop long-wavelength semiconductor lasers on GaAs substrates, to enable exploitation of vertical-cavity architectures as well as monolithic integration with GaAs-based high-speed microelectronics, and (ii) to realise uncooled operation of semiconductor lasers, whereby the external cooling equipment typically required to maintain operational stability in long-wavelength devices can be removed in order to significantly reduce energy consumption without degrading the device performance.

Read more of this post

GaN-based lasers for droop-free lighting?

droop2Ever since Shuji Nakamura mentioned in his Nobel lecture in Stockholm that lasers are the future of lighting, I am puzzled by this claim, especially by the now widely circulated statement that laser diodes are free from efficiency droop. It suggests an advantageous energy efficiency of laser diodes, as shown in the last figure 17 of his lecture (which is actually invalidated by his own reference). If you are familiar with the much debated efficiency droop burdening GaN-LED lighting, you will agree that the underlying carrier loss mechanisms are also  present in laser diodes. Even worse, laser diodes require a higher carrier density in the active layers and therefore exhibit stronger Auger recombination and possibly also electron leakage already at lasing threshold. Read more of this post

How to predict the thermal conductivity of multi-layer structures

DBRWe were puzzled for a long time, as to why the simulated self-heating of vertical-cavity surface-emitting lasers (VCSELs) is smaller than the measured temperature rise. After checking all the details of model and measurement, we ended up with the suspicion that the thermal conductivity of the GaAs/AlAs distributed Bragg reflectors (DBRs) is much lower than expected. This was eventually confirmed by direct measurements (see picture). Even 100nm thick layers restrict the phonon mean free path that determines the thermal conductivity of GaAs and AlAs. In other words, the typical averaging of bulk thermal conductivities may lead to a serious underestimation of the thermal resistance of multi-layer structures. In fact, the thermal conductivity of such structures could be strongly anisotropic. Read more of this post