NUSOD Blog

Connecting Theory and Practice in Optoelectronics

Category Archives: laser

How to work with commercial software

2015fig1It’s time again to reflect on my peer review experience over the past year. Supported by the availability of high-end commercial software, the number of journal paper submissions on optoelectronic device simulation keeps rising. However, authors often seem to view such software as “magic box” that instantaneously delivers realistic results. Some papers don’t even discuss the underlying theoretical models. Such models are based on specific assumptions that may or may not be satisfied in the given case. High-end software packages offer some alternative modeling approaches and let the user decide. In other words, the user should have a detailed understanding of internal device physics and of the modeling approaches provided by the software.

But this is only the first step of a successful simulation strategy. The next step is the evaluation of material parameters used in the software. Initial simulation results are typically far off measured characteristics because key parameters are incorrect. Literature values are widely scattered in some cases. If crucial parameters cannot be measured directly on the device, they should be varied in the simulation until quantitative agreement with measurements is achieved. The model itself may be inappropriate if such effort fails or if the fit value is outside the published range. Contradicting models could deliver nearly identical results (see picture) so that more decisive measurements are needed. Such calibration process is often difficult and time-consuming, but in my view, it is the only way to accomplish a realistic simulation. Otherwise, calculated results are unreliable and may lead to wrong conclusions. Read more of this post

Advertisements

High-power GaN-based laser with tunnel junction

tunnel junction laserThus far, the highest output power measured on GaN-based lasers is about 7W, as shown in the picture. [1] In comparison, some GaAs-based lasers emit more than 30W in continuous-wave operation at room temperature. A key reason for this difference is the inherently large p-side electrical resistance of GaN-based laser diodes. It leads to strong Joule heating which lowers the gain and boosts various loss mechanisms that eventually cause the typical power roll-off at high currents. [2] Read more of this post

NUSOD 2017 Preview: Dynamic simulation of quantum cascade laser structures with optical nonlinearities

QuantuQCL_combm cascade lasers (QCLs) utilize quantized electron states as laser levels, which can be custom-tailored to the specific application by adequately designing the multi-quantum-well active region. With dephasing times between the upper and the lower laser level of about a picosecond, coherent light-matter interaction, along with other effects such as dispersion and spatial hole burning, governs the laser dynamics [1]. Besides leading to multimode instabilities [1], the ultrafast dynamics in QCLs is increasingly exploited to implement innovative functionalities, such as the generation of frequency combs [2,3] and picosecond optical pulses [4] in the mid-infrared and terahertz regime.

For a targeted design of such structures and a deeper understanding of the complex QCL dynamics, a detailed theoretical model is required. We have developed a multi-domain simulation approach, which couples a Maxwell-Bloch type description of the light-matter interaction with advanced ensemble Monte Carlo (EMC) carrier transport simulations to eliminate empirical electron lifetimes [5]. In the figure, simulation results for a QCL-based terahertz frequency comb source [3] are presented. The laser dynamics gives rise to a two-lobed power spectrum consisting of equidistant discrete comb lines [Fig. (a)]. Furthermore, a periodic temporal shifting of the power between the two spectral lobes is observed [Fig. (b)]. The two-lobed comb spectrum and the associated temporal switching dynamics have also been observed in experiment [3,5], validating our simulation model.

Read more of this post

NUSOD 2017 Preview: Theory and simulations of self-pulsing in photonic crystal Fano lasers

fano_laserPulsed lasers are utilised in a wide variety of applications, especially optical communication systems, and in particular lasers that support passive pulse generation (self-pulsing). The phenomenon of self-pulsing was exclusively found in macroscopic lasers until recently, where self-pulsing in a microscopic photonic crystal Fano laser was reported [1].

The Fano laser (fig. 1) consists of a line-defect waveguide in a 2D photonic crystal membrane coupled to a nearby point-defect, with active material embedded directly in the membrane. This coupling yields a strong, narrowband suppression of transmission, due to the interference of the continuous waveguide modes with the discrete mode of the nanocavity, effectively forming the right-most laser mirror at the symmetry line, with the left formed by termination of the waveguide [2].

Read more of this post

NUSOD 2017 Preview: Maximum GaN-laser power limited by Auger recombination

AugerT80Auger recombination inside the light-emitting InGaN quantum wells (QWs) was recently identified as major cause of output power limitations in GaN-based blue light-emitting diodes (LEDs) which are the core of many modern light sources. In this electron-hole recombination process, the released energy is transferred to another carrier (electron or hole) without light emission. The Auger recombination rate rises strongly with the QW carrier density and therefore intensifies with stronger current injection into the LED.

In contrast to LEDs, GaN-based blue laser diodes are expected to suffer less from Auger recombination,  based on the popular opinion that the QW carrier density does not rise with increasing current injection above lasing threshold. Shuji Nakamura, who received the 2014 Nobel Prize in physics for his pioneering work on GaN-LEDs, stated in his Nobel lecture that “Auger recombina­tion, with the resulting efficiency droop, does not appreciably occur in blue laser diodes”.  We dispute this claim based on our numerical analysis of  high-power InGaN/GaN laser measurements.

Read more of this post